Se o valor é muito pequeno (menor que 0,01), ele declara que o efeito foi percebido. Se for muito grande (maior que 0,20), ele declara que, se há algum efeito, nenhum experimento do tamanho do que foi executado, será capaz de detectá-lo.
O valor-p indica a probabilidade de se observar uma diferença tão grande ou maior do que a que foi observada sob a hipótese nula. Mas se o novo tratamento tiver um efeito de tamanho menor, um estudo com uma pequena amostra pode não ter poder suficiente para detectá-lo.
Se o valor-p for menor que 0.05, devemos rejeitar a hipótese nula de que não há diferença entre as médias e concluir que existe uma diferença significativa. Se o valor-p for maior que 0.05, não é possível concluir que existe uma diferença significativa. Isso está bem claro, não é mesmo? Abaixo de 0.05, significativo.
Um valor-p de 0,06 significa que existe uma probabilidade de 6% de se obter esse resultado por acaso quando o tratamento não tem nenhum efeito real. Como definimos o nível de significância de 5%, a hipótese nula não deve ser rejeitada.
Em resumo, um valor de p menor que 0,05 sugere que a probabilidade de obter os resultados observados — ou resultados mais extremos — sob a suposição de que a hipótese nula seja verdadeira, é inferior a 5%.
O QUE É E COMO INTERPRETAR O VALOR DE P NA ANÁLISE ESTATÍSTICA
Como ler o valor de p?
O valor de p é a probabilidade de observar uma estatística de interesse igual ou mais extrema que a observada nos dados, assumindo que a hipótese nula é verdadeira. Formalmente, expressamos isso como p(Dados | H0), onde H0 é a hipótese nula.
Em estudos na área da saúde, é frequente dicotomizar o valor de p utilizando o ponto de corte de 0,05 para indicar se hipótese nula pode ou não ser rejeitada com um nível de segurança. O Quadro 1 apresenta uma interpretação simplificada, mas adequada do valor de p.
O valor de p é calculado usando a distribuição amostral da estatística de teste sob a hipótese nula, os dados de exemplo, e o tipo de teste que está sendo feito (teste de cauda inferior, teste de cauda superior, ou teste bilateral).
O nível de significância é geralmente determinado pelo pesquisador antes da coleta dos dados. Em muitas aplicações da estatística, o nível de significância é tradicionalmente fixado em 0,05.
O cálculo do p-valor envolve as seguintes etapas: Defina a hipótese nula e a hipótese alternativa: A hipótese nula é geralmente uma afirmação de que não há diferença ou efeito significativo entre as variáveis que estão sendo testadas, enquanto a hipótese alternativa é a afirmação oposta à hipótese nula.
O que fazemos quando o p-valor é maior do que o nível de significância?
E esta situação em que o valor "P" é maior que o nível de significância, eu não vou rejeitar a hipótese nula. Então, esta é a base para testes de significância de maneira geral. E isto é aplicável em praticamente todos os campos.
Os testes de hipóteses, no geral, apresentam duas hipóteses: ▪ Hipótese nula (ou da nulidade), geralmente representada por H0, que é a hipótese natural colocada à prova. Hipótese alternativa, geralmente representada por H1 ou HA, que é a hipótese alternativa à hipótese colocada à prova.
Então, – Um pequeno valor de p (p ≤ 0,05, ou seja, probabilidade menor ou igual a 5%): indica que há uma pequena probabilidade de que a diferença observada entre os grupos seja ao acaso, então, você considera que há diferença significativa entre os grupos.
Resumo. O p-valor pode ser definido como uma probabilidade que informa o nível de incompatibilidade dos dados observados com um modelo teórico esperado. Por essa razão, atua como um dos principais parâmetros de significância estatística de pesquisas empíricas.
Um valor de p de 0,05 é um limiar universal para a significância estatística. Um valor de p significativo prova a causalidade. A realidade: A significância estatística indica apenas a probabilidade de obter o resultado observado ou mais extremo sob a hipótese nula.
O valor-p para cada termo testa a hipótese nula de que o coeficiente é igual a zero (sem efeito). Um valor-p baixo (< 0,05) indica que você pode rejeitar a hipótese nula.
Se a diferença não é devida ao acaso, dizemos que é uma diferença estatisticamente significativa. São inúmeras as situações em que precisamos ter certeza de que as diferenças que observamos não são explicadas por acaso. É a base do método científico. Por exemplo, vamos pensar sobre uma pesquisa médica.
O que significa o valor-p em um teste de hipótese?
Teste de hipótese : Valor-p. É a probabilidade de se encontrar um valor estatístico maior ou igual ao encontrado no estudo, caso a relação não seja real (H0 verdadeira).
O que significaria exatamente significância estatística ao nível de 5 % de probabilidade? A expressão indica apenas que o valor calculado pelo teste (qualquer que seja este) só poderia ser encontrado, por simples variação natural do acaso, no máximo 5 vezes em 100 amostras aleatórias semelhantes.