O valor-p indica a probabilidade de se observar uma diferença tão grande ou maior do que a que foi observada sob a hipótese nula. Mas se o novo tratamento tiver um efeito de tamanho menor, um estudo com uma pequena amostra pode não ter poder suficiente para detectá-lo.
O valor de p é a probabilidade de observar uma estatística de interesse igual ou mais extrema que a observada nos dados, assumindo que a hipótese nula é verdadeira. Formalmente, expressamos isso como p(Dados | H0), onde H0 é a hipótese nula.
Se o valor-p for menor que 0.05, devemos rejeitar a hipótese nula de que não há diferença entre as médias e concluir que existe uma diferença significativa. Se o valor-p for maior que 0.05, não é possível concluir que existe uma diferença significativa. Isso está bem claro, não é mesmo? Abaixo de 0.05, significativo.
O valor de p é calculado usando a distribuição amostral da estatística de teste sob a hipótese nula, os dados de exemplo, e o tipo de teste que está sendo feito (teste de cauda inferior, teste de cauda superior, ou teste bilateral).
O QUE É E COMO INTERPRETAR O VALOR DE P NA ANÁLISE ESTATÍSTICA
Como calcular o valor-p?
Para calcular o p-valor, é necessário coletar uma amostra de dados e calcular uma estatística de teste adequada para a hipótese que está sendo testada. Existem muitas estatísticas de teste diferentes disponíveis, cada uma adequada para um tipo específico de hipótese e de conjunto de dados.
Em estudos na área da saúde, é frequente dicotomizar o valor de p utilizando o ponto de corte de 0,05 para indicar se hipótese nula pode ou não ser rejeitada com um nível de segurança. O Quadro 1 apresenta uma interpretação simplificada, mas adequada do valor de p.
Em resumo, um valor de p menor que 0,05 sugere que a probabilidade de obter os resultados observados — ou resultados mais extremos — sob a suposição de que a hipótese nula seja verdadeira, é inferior a 5%.
O valor de significância, ou valor p, é a probabilidade de que um resultado tenha ocorrido por acaso. O valor de significância é comparado com um corte predeterminado (o nível de significância) para determinar se um teste é estatisticamente significativo.
O nível de significância é geralmente definido como 5% (ou 0,05), embora possam ser utilizados outros níveis dependendo do estudo. Isto representa a probabilidade de rejeitar a hipótese nula quando é verdadeira.
Se o valor é muito pequeno (menor que 0,01), ele declara que o efeito foi percebido. Se for muito grande (maior que 0,20), ele declara que, se há algum efeito, nenhum experimento do tamanho do que foi executado, será capaz de detectá-lo.
Um valor de p significativo significa que o efeito ou associação é grande ou clinicamente significativo. Um valor de p não significativo significa que não existe qualquer efeito ou associação.
O que significa o valor-p em um teste de hipótese?
Teste de hipótese : Valor-p. É a probabilidade de se encontrar um valor estatístico maior ou igual ao encontrado no estudo, caso a relação não seja real (H0 verdadeira).
Se a diferença não é devida ao acaso, dizemos que é uma diferença estatisticamente significativa. São inúmeras as situações em que precisamos ter certeza de que as diferenças que observamos não são explicadas por acaso. É a base do método científico. Por exemplo, vamos pensar sobre uma pesquisa médica.
Um valor-p é tido como significativo quando está abaixo de um nível de significância pré-estabelecido, comumente 0,05. Este critério sugere que é improvável que esses resultados ocorram se a hipótese nula (H0) for verdadeira.
– Um grande valor de p (p > 0,05, ou seja, probabilidade maior que 5%): indica que há uma grande probabilidade de que a diferença observada entre os grupos seja ao acaso, então, você considera que não há diferença significativa entre os grupos.
O que fazemos quando o p-valor é maior do que o nível de significância?
E esta situação em que o valor "P" é maior que o nível de significância, eu não vou rejeitar a hipótese nula. Então, esta é a base para testes de significância de maneira geral. E isto é aplicável em praticamente todos os campos.
Assim, uma outra interpretação para o valor-p, é que este é o menor nível de significância com que se rejeitaria a hipótese nula. Em termos gerais, um valor-p pequeno significa que a probabilidade de obter um valor da estatística de teste como o observado é muito improvável, levando assim à rejeição da hipótese nula.
No unicaudal é postulada a direção da diferença e a zona de rejeição fica à direita ou à esquerda da distribuição. No bicaudal H1 postula a diferença entre as médias, mas não a direção das diferenças. Neste caso, a área de rejeição estará dividida por duas áreas da curva.
Resumo. O p-valor pode ser definido como uma probabilidade que informa o nível de incompatibilidade dos dados observados com um modelo teórico esperado. Por essa razão, atua como um dos principais parâmetros de significância estatística de pesquisas empíricas.
Assim, um valor de 0,01 indica uma evidência forte contra a validade de HO; 0,05 indica uma evidência moderada etc. É interessante notar que FISHER tomou como ponto de referência o valor 0,05: valores do p-valor menores do que 0,05 indicam que devemos rejeitar a hipótese nula.
Em tal caso, se o p-value for menor que algum corte (usualmente 0,05, algumas vezes um pouco mais como 0,1 ou um pouco menos como 0,01) então você rejeita a hipótese nula.