O que significa o valor-p em um teste de hipótese?
O valor de p é a probabilidade de observar uma estatística de interesse igual ou mais extrema que a observada nos dados, assumindo que a hipótese nula é verdadeira. Formalmente, expressamos isso como p(Dados | H0), onde H0 é a hipótese nula.
O valor "P", aquele que estamos usando para decidir se vamos ou não rejeitar a hipótese nula, é a probabilidade de ter a sua estatística amostral dado que a hipótese nula é verdadeira.
O valor-p indica a probabilidade de se observar uma diferença tão grande ou maior do que a que foi observada sob a hipótese nula. Mas se o novo tratamento tiver um efeito de tamanho menor, um estudo com uma pequena amostra pode não ter poder suficiente para detectá-lo.
Se o valor-p for menor que 0.05, devemos rejeitar a hipótese nula de que não há diferença entre as médias e concluir que existe uma diferença significativa. Se o valor-p for maior que 0.05, não é possível concluir que existe uma diferença significativa. Isso está bem claro, não é mesmo? Abaixo de 0.05, significativo.
Um valor de p significativo significa que o efeito ou associação é grande ou clinicamente significativo. Um valor de p não significativo significa que não existe qualquer efeito ou associação.
O QUE É E COMO INTERPRETAR O VALOR DE P NA ANÁLISE ESTATÍSTICA
Como explicar o valor de p?
O valor de p é a probabilidade de observar uma estatística de interesse igual ou mais extrema que a observada nos dados, assumindo que a hipótese nula é verdadeira. Formalmente, expressamos isso como p(Dados | H0), onde H0 é a hipótese nula. Essa definição pode parecer complexa à primeira vista.
O p-valor (nível descritivo ou probabilidade de significância) é a probabilidade de se obter uma estatística de teste igual ou mais extrema que a estatística observada a partir de uma amostra aleatória de uma população quando a hipótese nula é verdadeira.
Em resumo, um valor de p menor que 0,05 sugere que a probabilidade de obter os resultados observados — ou resultados mais extremos — sob a suposição de que a hipótese nula seja verdadeira, é inferior a 5%.
Em estudos na área da saúde, é frequente dicotomizar o valor de p utilizando o ponto de corte de 0,05 para indicar se hipótese nula pode ou não ser rejeitada com um nível de segurança. O Quadro 1 apresenta uma interpretação simplificada, mas adequada do valor de p.
Se o valor é muito pequeno (menor que 0,01), ele declara que o efeito foi percebido. Se for muito grande (maior que 0,20), ele declara que, se há algum efeito, nenhum experimento do tamanho do que foi executado, será capaz de detectá-lo.
Se a diferença não é devida ao acaso, dizemos que é uma diferença estatisticamente significativa. São inúmeras as situações em que precisamos ter certeza de que as diferenças que observamos não são explicadas por acaso. É a base do método científico. Por exemplo, vamos pensar sobre uma pesquisa médica.
O nível de significância é geralmente definido como 5% (ou 0,05), embora possam ser utilizados outros níveis dependendo do estudo. Isto representa a probabilidade de rejeitar a hipótese nula quando é verdadeira.
Assim, uma outra interpretação para o valor-p, é que este é o menor nível de significância com que se rejeitaria a hipótese nula. Em termos gerais, um valor-p pequeno significa que a probabilidade de obter um valor da estatística de teste como o observado é muito improvável, levando assim à rejeição da hipótese nula.
O valor de p é calculado usando a distribuição amostral da estatística de teste sob a hipótese nula, os dados de exemplo, e o tipo de teste que está sendo feito (teste de cauda inferior, teste de cauda superior, ou teste bilateral).
O valor de significância, ou valor p, é a probabilidade de que um resultado tenha ocorrido por acaso. O valor de significância é comparado com um corte predeterminado (o nível de significância) para determinar se um teste é estatisticamente significativo.
Um valor-p é tido como significativo quando está abaixo de um nível de significância pré-estabelecido, comumente 0,05. Este critério sugere que é improvável que esses resultados ocorram se a hipótese nula (H0) for verdadeira.
– Um grande valor de p (p > 0,05, ou seja, probabilidade maior que 5%): indica que há uma grande probabilidade de que a diferença observada entre os grupos seja ao acaso, então, você considera que não há diferença significativa entre os grupos.
O valor-p para cada termo testa a hipótese nula de que o coeficiente é igual a zero (sem efeito). Um valor-p baixo (< 0,05) indica que você pode rejeitar a hipótese nula.
Os testes de hipóteses, no geral, apresentam duas hipóteses: ▪ Hipótese nula (ou da nulidade), geralmente representada por H0, que é a hipótese natural colocada à prova. Hipótese alternativa, geralmente representada por H1 ou HA, que é a hipótese alternativa à hipótese colocada à prova.
Uma vez calculada a estatística de teste, a utilizamos para calcular o valor-p. O valor-p é definido como a probabilidade de se observar um valor da estatística de teste maior ou igual ao encontrado.
Em tal caso, se o p-value for menor que algum corte (usualmente 0,05, algumas vezes um pouco mais como 0,1 ou um pouco menos como 0,01) então você rejeita a hipótese nula.